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T @I (e + t2) Jahn-Teller systems 

Y M Liu, P J Kirk, C A Bates and J L Dunn 
Physics Depaibnent, The University. Nottingham NG7 ZRD, UK 

Received 8 April 1993 

Abstract. Secand-order Jahn-Teller reduction factors have been calculated for the orthorhombic 
T @ (e + t2) Jahn-Teller system for orbital operators that have symmetries E @E, Tz @ Tz 
and TZ @ E. The calculations are based on the recently formulated symmettyrelated method 
involving the calculatian of osciUa@r overlaps. They are extracted from the symmefly-adapted 
cubic vibronic states derived analytidy by Hallam er d. The results obtained are useful in the 
modelling of strongly coupled impurities in semiconductors when uniaxial stresses ars applied 
to the system. 

~~ 

1. Introduction 

In spectroscopic studies of a vibronic system, it is well known that Jahn-Teller (IT) reduction 
factors are very useful when an effective Hamiltonian is introduced to express the effects 
of perturbations within the degenerate levels in a compact manner. These reduction factors 
are called ‘first-order’ or ‘second-order’ according to the order in perturbation theory in 
which the perturbation V appears (Ham 1965). In some strongly coupled systems, second- 
order terms can have a greater influence than first-order terms, particularly in orbital triplet 
systems. Hence it is important to be able to calculate second-order reduction factors for 
such systems. The basic ideas of the problem are given in the books by P e r h  and Wagner 
(1984) and Bersuker and Polinger (1989). 

Reduction factors may be calculated numerically or analytically. In the former category, 
we cite the recent work of O’Brien (1990) for the second-order JT reduction factors involving 
the major perturbation of spin-orbit coupling for the T @ tz system. In the latter category, 
the Nottingham group has developed an analytical method for the calculation of the second- 
order reduction factors for both orbital triplet and orbital doublet systems. Two approaches 
to the problem have been used. One is the method described in Bates and Dunn (1989) 
and Dunn and Bates (1989) in which the reduction factors are obtained by comparing 
the matrix elements of the second-order perturbation involving V twice within the ground 
vibronic states to those of the effective Hamiltonian within a purely electronic basis by 
direct calculations. The other method uses the symmetry-related formalism developed by 
Polinger ei a1 (1991) and Bates et a1 (1991). Here, the sums of overlaps between the 
appropriate oscillator ground states .and the symmetry-adapted oscillator excited states are 
evaluated in order to obtain expressions for the second-order reduction factors. 

Many papers have been published calculating second-order reduction factors by these 
two methods for spin-ofiit coupling (AZ . s) (e.g. Bates and Dunn 1989, Dunn and Bates 
1989, Dunn et a1 1990, Polinger et a1 1991, Bates et al 1991) and Hallam et a1 (1992.b) 
have considered in particular the T@ (e+@ JT system. However, very recently Jamila et al 
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(1992) have calculated second-order reduction factors for the T2@tz system for perturbations 
relating to uniaxial stress which~have~symmetries EBE, Tz@Tz and Tz8E. The aim of this 
paper is to extend the calculations to the T 0 (e + tz) system for the same combinations of 
uniaxial stress based on the symmetry-related method. This is an obvious extension of  the 
original calculations of Hallam et a2 (1992b). To do this, it is essential to have a complete 
set of symmetry-adapted vibronic states for the strongly coupled orthorhombic T 8 (e + t2) 
system. Such states are available now in Hallam eta1 (1992a). 

Apart from the modelling of data obtained from uniaxial stress experiments in systems 
that are already characterized, the theory described below can be used to help determine the 
nature of the coupling in an unclassified IT system and/or also assist in the identification of 
an unknown impurity. From a theoretical point of view, it is very interesting to see how the 
various systems and symmetries of the different perturbations are inter-related. Analytical 
calculations based particularly on the method of Polinger er al (1991) are ideal for this 
purpose in contrast to numerical~methods where the symmetry properties are generally 
obscured. 

The mathematical background to the method used for the derivation of the effective 
Hamiltonian for uniaxial stress is given in detail in section 2. This section also gives the 
general expressions for second-order reduction factors derived originally by Polinger et al 
(1991), Hallam (1991) and Kirk (1992). In section 3, second-order reduction factors for the 
perturbations described as E@E, T2 @Tz and TZ @E for an orbital TI triplet at a Td site are 
derived. A brief discussion of the ground-inversion-level coupling is given in section 4. 

Y M Liu et a1 

2. Mathematical background 

2.1. Effective Hamiltonian 

We consider an isolated orbital triplet that is strongly coupled to the vibration of its 
surroundings. The elecfxonic orbital states may be written in the form [ r y ) ;  the eigenstates 
of the system are vibronic states that are written in the form [ N r y ) .  The labels r y  give the 
irreducible representation (IR) and the component of the state while N labels the repeated IR 
of the vibronic state such that their energies Ekw increase with increasing N .  In Polinger 
et al (1991), vibronic eigenstates were written as 

where (EaAl lry)  are the Clebsch-Gordan (CO) coefficients and [N(I')AX] are functions 
of the nuclear coordinates Q and hence~represent the phonon states. A perturbation V can 
cause a splitting of the ground vibronic state lory).  In second order, the additional splitting 
can be described by 

W) = vc(r)v (2.2) 

where 

As G(T) is a scalar, the symmetry of 31" depends only on the symmetry within V @ V. 
In this way, the effective Hamiltonian '7i$ used to describe the vibronic system can be 
obtained. 
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Now~consider the effect of strain as the perturbation on the ground states. A perturbation 
Hamiltonian generated by the strain can be written in the general form 

v = Vr,Qr,,iLr,n (2.4) 
rk ~r 

where Vrk are coupling constants, Qj-eyk is the static contribution to ertyk from the strains 
of rkyk symmetry and Lrkn are orbital operators. The latter may be identified by the CG 
coefficients from the relation 

(WLrEnl rYj )  = ~ ( r k n W j l r y i ) .  (2.5) 
On substituting (2.4) into (2.2) and defining appropriate second-order vibronic reduction 
factors K:)(rk Bra), we obtain a general expression for the effective Hamiltonian: 

U2 = ~ ~ ~ V r ~ V r , Q r ~ n Q r , n ( r ~ Y k r f y i l M / r ) ~ ~ ) ( r k B r f ) p ~ W ( r k B r ~ )  G . 6 )  
MW rkn r,n 

where the second order reduction factors are defined as 

K,?(rk r l )  = (oryiipMW(rk @ rl)lor~j)/(r~~lpMW(rk @ rl)lryj) (2.7) 

TMW(rk rt) = CLr,nG(r)Lr,n(rxYwrlyiIM/r) 

and the irreducible tensors are given by 

As an example, let us consider strains of E and Tz symmetries. In this  case,^ V is given by 
@unn and Bates 1988) 

(2.9) 
where VE and VT are first-order coupling constants, Qe is the static contribution to Qo from 
strains of &-type symmetry etc and Eo, Ec,  TyL, TzL and Txy are orbital operators having 
the symmetry indicated. 

The magnitude of the strain energies Vi Qi will be much less than the JT energy, so the 
effect of the strain can be treated as a perturbation on the vibronic states. After substituting 
(2.8) into (216), we obtain the following effective Hamiltonian to describe these strains: 

(2.10) 

v = VEtQEEE + G C E , )  + vT(d$Tyz + 6STzx Q 6 T y )  

%i (2) 1 - u E @ E  eff + 2@@T* eff +U:;@? 
where 

U:$€= V , ~ ( ~ ~ ( ~ + ~ ) K ~ ) ( E B E ) ( ~ , Z + Q : )  

U? = v E v ~ { $ ~ / S K E ) ( E  B T2jrQ4c1/SQo + Qe)~,AQS(-&Qo + Q,jT,, 

+ ~ K ~ ~ ) ( E ~ Z I E ) [ E ~ ~ Q : -  &+ E J Q ~ Q . ~ )  (2.11) 

I (2) - 2QsQs Txy I - zKT, (E B Tz) 

X [ . d 4 ( &  - &Q<)Tyz + Qs(dE +&&)&x - 2 Q S & T x y ] ]  (2.12) 
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In fact, all real crystals will incorporate a wide range of different strains, which can be 
modelled by varying the values of the Qis.  Consider the uniaxial stress cases in which a 
stress is applied externally along a known axis of the crystal. A tetragonal strain along the 
[OOlI axis is generated when all the 

Y M Liu er a1 

are zero except &. In this case, we have 

'Ha (2) - - vz E [ Z I ( I +  1 l)K;'(E@E)Qe - iKf)(E@E)EeGi]. (2.14) 

For a triagonal strain along the [111] axis of the cluster, we have Qo = Q, = 0 and 
Q4 = Q5 = Q6 = QT. Therefore, thk effeciiqe Hamiltonian% 

'Ha - T [a  31(l + I)KE)(Tz @ Tz) Q: - $ f i K x ) V z  €3 Tz) C!+(Tyz + Tu + Tq)]. (2.15) (2) - v2 I 

Finally, for an orthorhombic strain along the [110] axis of the crystal, a, = & = I& = 0, 
so we obtain 

FLa (2) - - vz E [ ; ~ ~ ( ~ + ~ ) K ~ ) ~ E E ) Q ~ - ~ K ~ ) ( E @ E ) E ~ Q ~ ]  I 

+ V,z[a l ( l+ l )K~)(Tz@Tz)Q~+ ~ K ~ ) ( T z @ T z ) E B Q ~ I  

(2.16) 

2.2. Reduction factors 

As we can see from the above, E: describes the effect of strains expressed in terms of 
second-order reduction factors which multiply the original electronic perturbations. Hence it 
is important to be able to calculate these reduction factors. Polinger eta1 (1991) developed 
a general expression for the derivation of second-order reduction factors, which is given by 

with 

(2.17) 

In the above, the 6r symbols are written with large square brackets, the fictitious angular 
momentum operator as j ( r )  and the dimension of a representation with small brackets 
(see, e.g., Griffiths 1962), r k  and r, denote the symmetry components of the Vs and 
{O(r)Ml ln(A)M} are the oscillator overlap integrals. 

To be able  to^ use the formulation above, it is necessary to obtain expressions for the 
ground and excited vibronic states in symmetry-adapted form. This is generally a difficult 
problem. However, for the T @ (e + tz) system, these vibronic states have been calculated 
by Hallam et aI (1992a). In order to extract the required oscillator parts of the vibronic 
states and thus calculate the reduction factors, the procedures given in the appendix must 
be used. 
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3. Calculations of the reduction factors 

3.1. The reductionfactors contained within 31%' 
In this case, we have rk = Ti =E. Substituting into (2.17), we obtain 

KE'(E 8 E) = ~ I R T ,  + RT2] Kf)@ 8 E) = ~ [ R T ,  - RT~]. (3.1) 
These expressions are exactly the same as those deduced by Jamila er al(1992) for the T@ t2 
IT system. This is because the general expression (2.17) for second-order reduction factors 
is valid for any type of vibronic system. The differences between the different systems are 
contained entirely within the overlap factors RA. These in tum depend upon the details of 
the ground and all the excited vibronic states (Hallam et al 1992a). On comparing these 
symmetry states with the general form given in (2.1), simultaneous equations are obtained 
(see the appendix) which can be solved easily to give the phonon states required in the 
calculation of the second-order reduction factors. After a great deal of algebra, we obtain 

(3.2) RT, = $(GI + Gz) 

G I  = -E r7(p. 4. r , s ,  ~ g l ( p ,  q. t ,  r, s) + g z ( p ,  q,r,s,  OI* 

R T ~  = i(G3 + ' 3 4 )  

where 

N 

1 J ~ K E  
H ( p ,  q )  = - (">p ?iiWE (-1 ?iiOE 

(3.3) 

(3.4) 

In the above, p .  g, r ,  s and t denote the numbers of phonon excitations, NI are normalizing 
factors, Set and se, are the overlaps of the oscillator ground states (see Hallam et a1 (1992a) 
for more details). 

Plots of KE' and Kf' as a function of K T / h q  are shown in figure 1 with the simplifying 
assumption that wE = = w. Also, the ratio q of the JT energies for e to t.r couplings is 
chosen to be 0.8 and the bi-linear constant KBL = -0.036. (The reasons for this choice of 
parameter values are given in detail in Hallam er a1 (1992b).) A total of 25 phonons were 
used in the computations for figure 1 (that is, p + q + r + s + t  = 25). Note that the formulae 
given in (3.4) are entirely general for any choice of parameter values and appropriate graphs 
can be obtained just as easily as the specific choice used above for display purposes. 
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0.w) 030 0.60 , 0.90 1.20 1.50 1.80 2.10 , 2.40 2.70 3.00 
KT I” 

Figure 1. Second-order reduction facton for peaurbations of the form E @ E plotted as a 
function of K T J ~  for the orlhorhombic T @ (e + tz) IT syslem with OE = on = o and with 
q = 0.8 and KBL = -0.036. 

3.2. The reduction factors contained in E ~ ~ @ T 2  
In this case, r, = r, = Tz. Because TZ 8 TZ = A1 + E + TI + Tz, we can obtain from 
(2.17) the four non-zero reduction factors 

On comparing the results given in equation (3.5) with the equivalent results for TI 8 TI 
given in equation (2.27) of Polinger et al (1991), we see that R A ~  has become R A ~ .  This is 
because for orbital states of TI symmetry, the direct product TI 8 TI involves A1 but not 
A2 (the latter is contained within direct product TI 63 Tz). M e r  inserting the appropriate 
overlap integrals into (ZlS),  the RAS are given by 

where 



... 
KT I EmT 

Figure 2. As for figure 1 
but for pertubations of 
the form Tz @T2. 

(3.10) 

The results are shown in figure 3. 
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- K T ~  
KTX . . .. . . . . '.. .: . .  . .. 

, . , . I . , . , . , . I . , . , . , . / . , , / . ,  
-0.5 , , 

0.00 0.30 0.60 0.90 1.20 1.59 1.80 2.10 2.40 2.70 3.00 but ~ t h  penurbarions of 
Fiyre 3. As for figure 1 

KT /%Or the form E @ T2. 

4. Discussion and conclusions 

We discuss first the accuracy of the calculations. It is well known that, for a TI ion, the 
T @  (e+ tz) JT system has a vibronic ground state of TI symmetry and an inversion level of 
T2 symmetry. As these vibronic state are coupled by the E and TZ strains studied here, a 
question arises concerning the convergence of the sums in our perturbation calculations of 
the reduction factors as the energy denominator tends to zero in the infinite-coupling limit. 
In order to investigate this limiting behaviour, new vibronic states have been obtained in 
which the strain has only diagonal elements by taking appropriate combinations of the 
vibronic ground and inversion states used above. Using these new states, it is found that 
the corrections to the reduction factors given above are proportional to Q: and thus they 
are very small. We conclude therefore that the above analysis, which excluded coupling to 
the inversion level, is accurate. 

This paper has described analytical calculations of the second-order reduction factors 
for the orthorhombic T @ (e + t2) JT system for perturbations which have symmetries E @ E, 
T2 @ T2 and Tz @E. As far as we are aware, these reduction factors have not previously 
been calculated by any method. The only other calculations for such perturbations appear 
to be those for the T @ e (Ham 1965) and T @ t2 (Jamila et al 1992) JT systems. In this 
paper, the second-order reduction factors have been calculated by following the symmetry- 
related method of Polinger et al (1991) and using the symmetry-adapted cubic vibronic 
states obtained previously by HaUam et al (1992a). The results obtained have the same 
general form as those derived earlier by Hallam e! nl (1992b) for the spin-orbit coupling 
which refer to TI @ TI perturbations. The positions of the peaks shown in figures 1-3 
occur at similar values of K ~ / h c i q  as those shown in figure 1 of Hallam et al (1992b) for 
the spin-orbit coupling. Also their maximum values are approximately the same. (Note 
that different quantities have been plotted in our figures; the relation between the different 
quantities is given'in equation (4.2) of Hallam et al (1992b)J 

From a theoretical point of view, it is interesting to observe the various differences and 
similarities that exist among the results obtained for the different symmetries of the second- 
order perturbations for the T@(e+t*) IT system alone as shown by equations (3.1H3.3) and 
(3.5). It is also of interest to compare the results of the same symmetries of perturbations 
between the different JT systems. Such comparisons are possible because the calculations 
are analytical and they have all used a method based on powerful symmetry arguments. 
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The results obtained here are primarily used to determine the effective Hamiltonians 
for the modelling of strongly coupled impurities in semiconductors when uniaxial stresses 
are applied to the system. A particular system of current interest to us is that of GaP:li3+. 
Uniaxial stress experiments are being carried out on the optical absorption zero-phonon 
line where departures from a linear stress dependence have been observed (AI-Shaikh et al 
1993). It is also apparent that both E- and Tz-type stresses affect the spectra. This leads 
to the question as to the nature of the JT effect in the upper T2 vibronic state that best 
describes the system. Jamila et a1 (1992) gives the relevant results for T@ tz systems, Ham 
(1965) for T c3 e systems and here we have the results for the T @ (e + tz) system. Work 
is currently in progress to try to establish the most likely type of JT effect operating in the 
excited state and the results describedhere will be significant in this analysis. 
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Appendix 

In order~to use equation (2.17) to calculate 'second-order reduction factors, we require 
expressions for the phonon states In(A)M) which can be extracted from the vibronic states. 
A complete set of symmetry-adapted vibronic states for strongly coupled T@(e+tz) systems 
have been derived in Hallam et ul (1992a) and can be written in the form 

with 

where [X(k) ' )  represents the electronic part of the state and IYck)) and lZi$ the etype 
phonon and tz-type phonon components respectively and the N r y s  are normalizing factors. 
For details of these definitions see Hallam et a1 (1992a). By substitution, w e  have 

Comparing (A3) with the general expression 
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we obtain a set of simultaneous equations: 

where v = x; y. z.  Solving these equations gives the phonon states required. In some 
cases, symmetry considerations may be of help in deriving the results. For example, when 
an orbital triplet of TI symmetry at a Td site is considered, we have = TI in the 
expression (As). Suppose r = A2; then since A2 is only involved in the direct product 
TI @ T2, there will be only one term with A = T2 remaining on the left-hand side of the 
equation (A5). This can also be seen easily from the-symmetry properties of CG coefficients. 
Thus we obtain directly the result 
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